

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Indie Engine

Getting Started
Here is a quick-start guide to getting started with Indie Engine.

1. Download the files from [github](https://github.com/Notsujal/Indie).
or type in the terminal
`py
pip install indie-engine
`

2. Create a new python file outside the IndieEngine folder
In this case its test.py

	
	Import IndieEngine into your file
	import IndieEngine as ie

Creating Screen
A Screen is a place where the game runs and is visible to player.
To create screen/window follow these steps.

	
	Set the window constants
	
	```py
	# Default Screen Constants
background_colour = colour.COLOUR.White
caption = “Indie Engine”
fps = 60
screen_size = QUAD(0,0,900,600) # a quad stores the corner points of a rectangle (x,y,width,height)

scale_amount = 1 # zoom of the main screen (to increase the pixel size)
icon_file = “” # path th the icon file goes here
scalable = False # set if user can resize the window for their comfert.





```
Lets change the caption and screensize
```py
# the code should look like this
import IndieEngine as ie

ie.app.init(caption=”Indie Engine”,fps= 30, scalable= True, screen_size=ie.Vector(500,400))
# make sure you initiate the package before you run the game
```


	
	Run the main loop using ie.run(). We now have a blank screen to work with.
	```py
import IndieEngine as ie

ie.app.init(caption=”Indie Engine”,fps= 30, scalable= True, screen_size=ie.Vector(500,400))

ie.run()
```


Update, Draw and Inputs

update: code inside the update is called every frame.

draw : draw mwthod is used to draw/blit objects on screen, it is called right after update method.

inputs : this methods gives events and mouse position to the sub-methods for easy handling.

Ideal way to start

```py
import IndieEngine as ie

ie.app.init(caption=”Indie Engine”,fps= 30, scalable= True, screen_size=ie.Vector(500,400))


	def game():
	
	def Update():
	pass



	def Draw():
	pass



	def Inputs(event,mouse):
	pass





ie.run(Update,Draw,Inputs) # run calls these methods when required
# make sure u don’t call the functions, and pass them as a object.





game() # with this you can have multiple screens
```

Game Objects
Every Object in the game is a Game Object.
It holds the parent object, may be usefull for alingning the childs later on.

`py
set parent
obj1 = ie.GameObject()
obj2 = ie.GameObject()
obj1.parent = obj2
`

Transform
Transform class allows access to position, size and rotation of the object.

align - align the object with respect to any object easily

stretch - stretch a object to its parent size

```py
# create a parent object
parent = ie.Transform(ie.Quad(0,0,200,200),0)

#create a child
transform1 = ie.Transform(ie.Quad(0,0,100,100),0)
# assign clild to the parent
transform1.parent = parent
# modify values
transform1.size = ie.Vector(120,120)
transform1.rotation = 20
# align function of transform
transform1.align(transform1.parent,”top-left”)
# arguments for anchor are:


# top-left
# top-center
# top-right

# middle-left
# middle-center
# middle-right

# bottom-left
# bottom-right
# bottom-center




transform1.stretch(“fill”,transform1.parent)
# arguments for stretch


# fill - fill the entire parent
# horizontal - fill only horizontally
# vertical - fill only vertically




```

Colour
This class has a method to make new colours, with some predefined colours

```py
black = ie.Colour().make(0,0,0)

#Standared colours
ie.Colour.Black
ie.Colour.White
ie.Colour.Red
ie.Colour.Lime
ie.Colour.Blue
ie.Colour.Yellow
ie.Colour.Aqua
ie.Colour.Fuchsia
ie.Colour.Silver
ie.Colour.Gray
ie.Colour.Maroon
ie.Colour.Olive
ie.Colour.Green
ie.Colour.Purple
ie.Colour.Teal
ie.Colour.Navy
```

Image
This class allows us to draw images on screen.

```py

def game():


image = ie.Image(ie.Quad(100,100,520,220),45,”Resources/folder.png”)


	def Draw():
	image.blit()





ie.run(update=None,draw=Draw,inputs = None)




game()
```

Panel
This allows us to draw Rectangles on the screen,
This is a backbone class for other classes.

```py
def game():


panel = ie.Panel(ie.Quad(0,0,200,300),10,0,ie.Colour.Black)


	def Draw():
	panel.blit()





ie.run(update=None,draw=Draw,inputs = None)




game()
```

Font
Font class allows us to create font assets and use them on text when required

`py
font_14 = ie.Font("Resources\font_big.ttf",14)
`

Text
Text class allows us to create and display one-liner texts

```py
def game():



font_14 = ie.Font(“Resources/font_big.ttf”,14)
text = ie.Text(ie.Quad(0,0,100,100),”Here is some text”,font_14,ie.Colour.Fuchsia,ie.Colour.Navy)


	def Draw():
	text.blit()








ie.run(update=None,draw=Draw,inputs = None)




game()
```

Button
This is a faster way to create buttons and handle inputs.
Buttton has three variables, ishovered, ispressed and isselected which we can use to control stuff.

Here is a example of a button

```py
font_14 = ie.Font(“Resources/font_big.ttf”,14)
def game():


button = ie.Button(ie.Quad(10,20,30,40),”Button”,font_14,ie.Colour.Fuchsia,ie.Colour.Lime)


	def Update():
	
	if button.ishovered:
	# do some stuff
pass



	if button.ispressed:
	# do some stuff
pass



	if button.isselected:
	# do some stuff
pass







	def Draw():
	button.blit()
pass



	def Inputs(event,mouse):
	button.control(event,mouse)
pass





ie.run(Update,Draw,Inputs)




game()
```

Tile Maps
Tile maps help us to create environments with few lines of code(collision included with character controller)
You can assign each tile-type a id, based on that you can make it collidable.
You can overlay tiles to create effects, or layers.

```py
import IndieEngine as ie


	ie.app.init(caption=”Indie Engine”, fps=30, scalable=True,
	screen_size=ie.Vector(500, 400))



	def game():
	
	level1 = ie.Tilemap(16, “Resources/map1.txt”,
	
	tiles={
	“1”: ie.Image(ie.Quad(0, 0, 16, 16), 0, “Resources/folder.png”),
“2”: ie.Image(ie.Quad(0, 0, 16, 16), 0, “Resources/blank_screen.png”),





})





# specify which tiles are acctually collidable from tiles array.
level1.loadmap(collidable_tiles=[“1”])  # tile with id 1 is collidable, rest are not.


	def Draw():
	level1.blit()
pass





ie.run(draw=Draw)





game()
```

/Resources/map1.txt
`
1111
222
1111
2
`

Character Controller
This is 8 way character controller,
assign buttons and movements to get going.

```py
import IndieEngine as ie


	ie.app.init(caption=”Indie Engine”, fps=30, scalable=True,scale_amount=5,
	screen_size=ie.Vector(900,600))



	def game():
	
	level1 = ie.Tilemap(16, “Resources/map1.txt”,
	
	tiles={
	“1”: ie.Image(ie.Quad(0, 0, 16, 16), 0, “Resources/folder.png”),
“2”: ie.Image(ie.Quad(0, 0, 16, 16), 0, “Resources/blank_screen.png”),





})





player = ie.Character_Controller(ie.Quad(0,0,16,16),20,”Resources/folder.png”,20)

# specify which tiles are acctually collidable from tiles array.
level1.loadmap(collidable_tiles=[“1”])  # tile with id 1 is collidable, rest are not.


	def Update():
	player.move() # move the player as required



	def Draw():
	level1.blit()
player.blit()



	def Inputs(event,mouse):
	player.control(event)





ie.run(Update,Draw,Inputs)





game()
```

Sprite Sheets
sprite sheets are performant way to add graphics to the game, it loads up a huge image instead of 1000 unique ones. And crops out the required part of it.

The classes are taken from [here](https://www.pygame.org/wiki/Spritesheet)

Explore the package files to know about more functions related to it.

```py
import IndieEngine as ie


	ie.app.init(caption=”Indie Engine”, fps=30, scalable=True,scale_amount=5,
	screen_size=ie.Vector(900,600))



	def game():
	spritesheet = ie.Spritesheet(“Resources/folder.png”)
# individual sprites
player = spritesheet.image_at((32,32,16,16),ie.Colour.White)

#can be used to create tilemaps
tilemap = ie.Tilemap(16,”demo.txt”,tiles={


“1”: spritesheet.image_at((0,0 ,16,16),ie.Colour.White),
“2”: spritesheet.image_at((0,16,16,16),ie.Colour.White),
“3”: spritesheet.image_at((0,32,16,16),ie.Colour.White),
“4”: spritesheet.image_at((0,48,16,16),ie.Colour.White),




})
def Update():


pass





	def Draw():
	player.blit()
pass



	def Inputs(event,mouse):
	pass





ie.run(Update,Draw,Inputs)





game()

```

Sprite Strip Animations
This class derives from SpriteSheet and thus is taken from [here](https://www.pygame.org/wiki/Spritesheet).

Load a strip of images with this class and use it as a frame by frame animation sequence.

```py

from pygame import Color
import IndieEngine as ie


	ie.app.init(caption=”Indie Engine”, fps=30, scalable=True,scale_amount=5,
	screen_size=ie.Vector(900,600))



	def game():
	player = ie.Character_Controller(ie.Quad(0,0,16,16),20,”Resources/folder.png”,20)

player_anim = ie.Spritestrip_animation(“Resources/folder.png”,(0,16,16,16),3,ie.Colour.White,loop=True,frames=3)
player_anim.iter() # iterate through the images once


	def Update():
	player.move()
player.image = player_anim.next() # bring on the next frame



	def Draw():
	player.blit()



	def Inputs(event,mouse):
	player.control(event)





ie.run(Update,Draw,Inputs)





game()
```

Files
With this class You can store/get data in json files.

```py
file_manager = ie.File(“settings”)

file_manager.save(“volume”, 0.5)
file_manager.save(“name”, “Indie Engine”)

print(file_manager.get(“volume”))
print(file_manager.get(“name”))

file_manager.delete(“volume”)
```

Music
This is extended Pygame.Mixer Library
```py
bg_music = ie.Music(“demo.mp3”)

bg_music.play(loops=-1,start=0,fade_ms=10)
#      loops =-1 —> play infinitely
#      start =0 —-> start at 0 sec
#      fade = 10 —> fade 10 ms

bg_music.volume(0.4)

bg_music.pause()

bg_music.unpause()

bg_music.fadeout()

bg_music.stop()

```

Sounds
Sounds is a class which can play sounds when needed.
```py
death = ie.Sound(sounds={


“death_1”: “sounds/death/1.mp3”,
“death_2”: “sounds/death/2.mp3”,
“death_3”: “sounds/death/3.mp3”,
“death_4”: “sounds/death/4.mp3”




})

death.add(“death_boss”,”sounds/death/boss.wav”)
death.remove(“death_2”)
death.play(“death_1”)
```

Thanks for using Indie Engine!

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

